

Optimizing Clinical NGS: Comparative Evaluation of Illumina iSeq100 and Complete Genomics G10-FR* Using DeepChek® Workflows

ABL Advanced
Biological
Laboratories

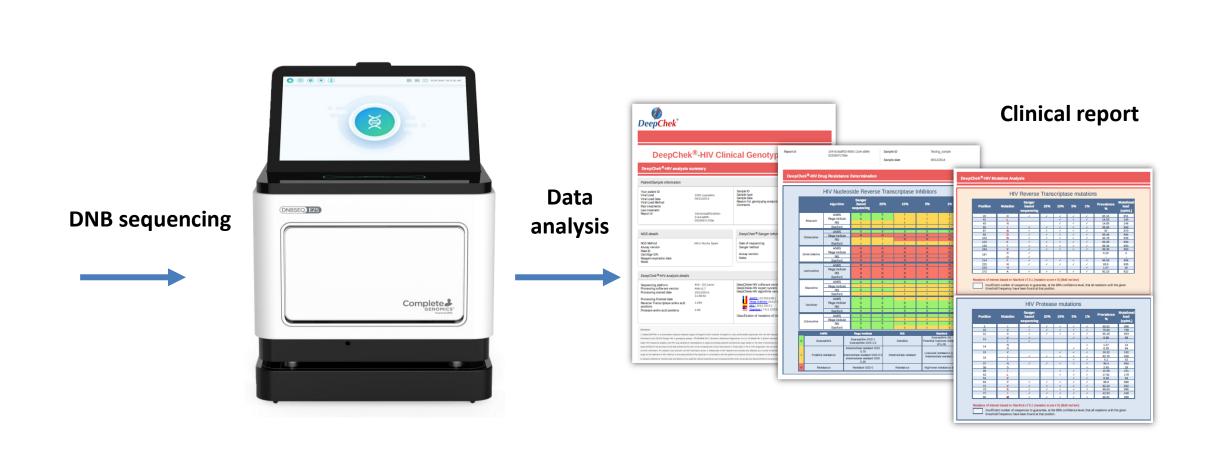
Diagnostics

ID046

Hui Ren¹, David Du, Charles Bao¹, Sam Crawford¹, Rezak Drali², Jessica Arliaud², Margaux Mercadal², Aitor Modol³, Giuseppina Zuco², Chalom Sayada⁴, Ronan Boulmé², Dimitri Gonzalez², Laurent Deblir⁴, Matthieu Barralon⁴, Sofiane Mohamed²

¹ Complete Genomics, ²ABL Diagnostics, France; ³ABL Spain; ⁴ABL SA, Luxembourg

*The G10-FR is marketed as E25 Flash in some territories


Background

Next-generation sequencing transforming infectious disease diagnostics by enabling comprehensive genotyping, detection, microbial resistance and identification^{1,2}. However, accessibility is often limited by cost, workflow complexity, and platform availability. While Illumina platforms are widely adopted³, newer systems like the Complete Genomics G10-FR* offer rapid sequencing with simplified workflows. In this study, we compared the performance of the Illumina iSeq100 and the Complete Genomics G10-FR (marketed as DNBSEQ-E25 Flash in some territories) using validated DeepChek® (ABL) kits and MicrobioChek® software, with a focus on pooling multiple applications in a single run to reduce per-sample costs.

Materials & Methods

DeepChek® HIV kits were used to amplify protease, reverse transcriptase, integrase regions (121A, 122A) and full HIV genome (170B) from Quality Control for Molecular Diagnostics. In parallel, bacterial and fungal targets were amplified using DeepChek® 16S and ITS kits for identification. Library preparation was performed using platformspecific DeepChek® NGS kits. Sequencing was conducted on the Illumina iSeq100 (PE150, 19hr) and Complete Genomics G10-FR* (SE100, 3.2 hr). The libraries were circularized and DNBs generated using a single-step protocol. Amplicons from different assays (HIV, 16S, ITS) were pooled into a single sequencing run to maximize efficiency. Data were analyzed with MicrobioChek®, which includes the HIVdb Stanford taxonomic and classification engine.

RT-PCR and PCR Library preparation So CirDNA Rolling Circle Replication (RCR) Rolling Circle Replication (RCR) NN 2x DNA Nanoballs (DNBs) High-density Patterned Flow Cell

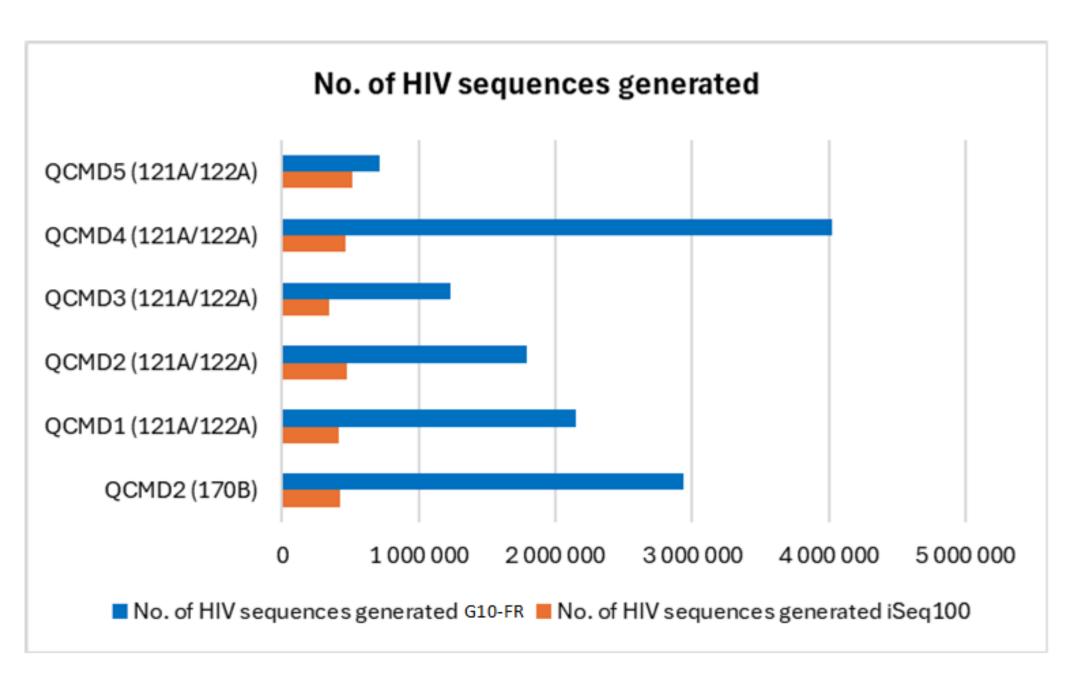
Complete Genomics DNA
Nanoball Sequencing:
☑ No clonal error
☑ No index hopping

✓ Low duplication rates

DeepChek® (ABL, Luxembourg) is a CE marked:
The pipelines consist of 10 major steps which are:
1) Data cleaning, 2) Subtyping, 3) Tropism analysis,
4) Alignment, 5) Post-alignment cleaning, 6) Consensus creation, 7) Variant calling, 8) Expert system filtering,
9) Drug resistance calculation, 10) Reporting

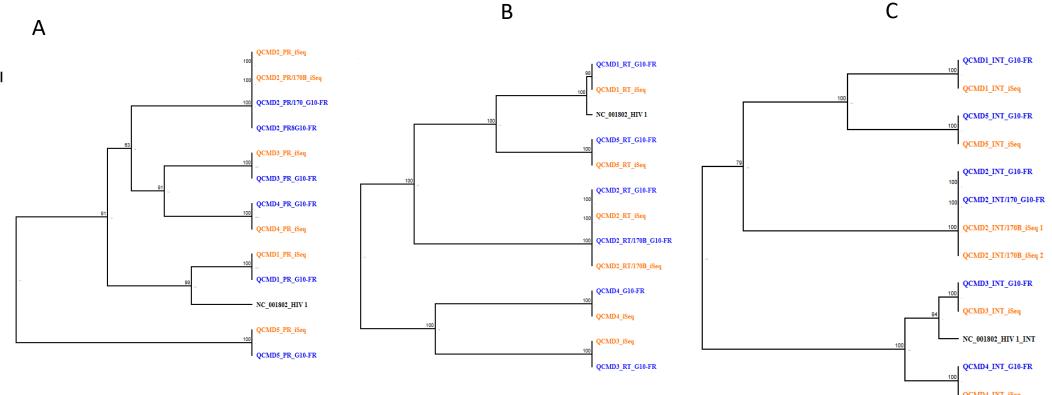
☐ DeepChek® HIV version 2.0 / expert system 2.3 /algorithms 13.1

☑ ANRS 33 10-2022 / Grade 2021 9-2021 / HIVdb 9.4 12-2022


☑ Classification of mutations of interest ANRS 33

☑ Microbiochek identification

Figure 1. End-to end Solution for HIV-1 Genotyping and Drug Resistance for Routine Diagnostic Sequencing.


Results

Both platforms generated high-quality sequencing data with high Q-scores and full genome coverage across applications. The Complete Genomics G10-FR* produced a significantly higher number of reads per run (~25M) compared to the Illumina iSeq100 (~4M), enabling greater depth and broader detection capacity, particularly in pooled workflows.

Figure 2. Comparison of the number of HIV sequences generated by the sequencing platforms Complete Genomics G10-FR* versus iSeq100 (Illumina). 121A/122A: target specific kit. 170B: whole genome kit.

Phylogenetic analyses demonstrated strong concordance between sequences obtained on both platforms.

Figure 3. Phylogenetic trees constructed using consensus sequences of protease (a), reverse transcriptase (b), and integrase (c) targets obtained from sequencing on the NGS platforms Complete Genomics G10-FR* versus Illumina iSeq100.

HIV genotyping showed >99% agreement, with only two low-frequency mutations showing discordance between platforms: M46V (3.32%) detected only by G10-FR* in the protease region, and D67N (3.25%) detected only by iSeq100 in the reverse transcriptase region. Importantly, these minor discrepancies (<5%) did not affect drug resistance interpretation thresholds. The complete workflow from DNA to data analysis takes approximately 24 hours on the Illumina iSeq100, including library preparation and sequencing. In comparison, Complete Genomics G10-FR* can deliver results in just 5-9 hours, offering a 50-70% faster turnaround.

Table 1. Bioinformatics analysis using MicrobioChek (ABL) to identify HIV-1 drug resistances obtained from Complete Genomics G10-FR* versus iSeq100 (Illumina) platforms.

Ν°	Soguencer	Subtype						Mutation					
IN	Sequencer	PR	%	RT	%	INT	%	PR	%	RT	%	INT	%
QCMD2	MGI E25	95_02B	96.63	02_AG	95.15	В	96.66	NA	NA	NA	NA	NA	NA
QOMDZ	Iseq 100	95_02B	96.63	02_AG	95.15	В	96.66	NA	NA	NA	NA	NA	NA
QCMD1	G10-FR	48_01B	93.27	В	99.58	08_BC	97.09	43 K → T	12.56	NA	NA	NA	NA
								46 M → I	95.95				
								54 I → V	98.41				
								82 V → A					
								90 L → M					
	Iseq 100	48_01B		В	99,58	08_BC	97,09	43 K → T	12,07	 	NA	NA	NA
								46 M → I	96,3				
								46 M → V					
								54 I → V	99,63				
								82 V → A					
								90 L → M	96,33				
QCMD2	G10-FR	95_02B		02_AG	94.86	В	99.45	NA	NA	190 G → E		NA	NA
	Iseq 100	95_02B	96.63	02_AG	94,86	В	99,45	NA	NA	190 G → E		NA	NA
		С	97.31	С	94.4	В	99.45		10.65	41 M→L	99.35	NA	NA
	G10-FR							88 N → S		67 D → N			
										69 T → D	99.31		
										98 A → G	99.17		
										184 M → I	98.6		
										188 Y ≁ L			
										190 G → A			
										210 L → W			
QCMD3										215 T → Y	98.29		
QUITE	lseq 100	С	97,31	С	94.4	В	99,45			41 M → L	99,63	NA -	NA
										67 D → N	99,01		
									12,1	69 T → D	98.08		
										98 A → G	99,18		
										184 M <i>→</i> I	99,13		
										188 Y ≁ L	99,37		
										190 G → A	99.48		
										210 L → W			
										215 T → Y	99,17		
QCMD4	G10-FR	146_BC	93.92	57_BC	94.93	В	99.58	46 M → I	95.52		3.25	143 Y → H	4.9
								54 I → V	94.93		98.08	NA	NA
								82 V → A	91.8				
	Iseq 100	146_BC	93,92	57_BC	94.93	В	99.58	46 M → I	96,01	184 M → V	99,54	143 Y → H	4,68
								54 I → V	96,06			NA	NA
								82 V → A	90,55				
QCMD5	G10-FR	В	99.66	В	96.14	121_0107	96.77	NA	NA	40 E → F	96.43	NA	NA
										41 M → L	100		
										184 M → V			
										210 L → W			
										215 T → Y	100		
	Iseq 100	В	99.66	154_0755	98,21	121_0107	96.77	NA	NA	40 E → F	100	NA	NA
										41 M → L	100		
										184 M → V	100		
										210 L → W	100		
										215 T → Y	100		

Microbial identification via 16S/ITS was consistent across platforms at species/strain level.

Table 2. Bioinformatics analysis using MicrobioChek (ABL) to identify bactreria and fungi obtained from Complete Genomics G10-FR* platform.

N°ABL	PCR	Expected result	Result Complete Genomics G10-FR_MicobioChek					
60	16Sv3	Bordetella pertussis A639	Bordetella pertussis strain NCTC13251 chromosome 1	NZ_LR590467.1				
62	16Sv3	Haemophilus influenzae tybe b (Eagan)	Haemophilus influenzae isolate KR271 chromosome 1, complete sequence	NZ_OV040584.1				
64	16Sv3	Streptococcus pyogenes (Z018)	Streptococcus pyogenes strain NCTC8318 chromosome 1	NZ_LR590483.1				
67	16Sv3	Pseudomonas aeruginosa clinical isolate	Pseudomonas aeruginosa isolate MINF_3A-sc-2280432 chromosome 1, complete sequence	NZ_LR898867.1				
69	16Sv3	Streptococcus salivarius (Z127)	Streptococcus salivarius strain NCTC8618 chromosome 1, complete sequence	NZ_LR134274.1				
SA	16Sv3	Staphylococcus aureus	Staphylococcus aureus strain ST20190863 isolate ST20190863 chromosome 1, complete sequence	NZ_OX344719.1				
65	ITS_Primers 2	Pneumocystis jiroveci-S cerevisiae recombinant	Saccharomyces cerevisiae S288C chromosome XII, complete sequence	NC_001144.5				
66	ITS_Primers 2	Candida albicans Z006	Candida albicans SC5314 chromosome R, complete sequence	NC_032096.1				
65	ITS_Primers 3	Pneumocystis jiroveci-S cerevisiae recombinant	Saccharomyces cerevisiae S288C chromosome XII, complete sequence	NC_001144.5				
66	ITS_Primers 3	Candida albicans Z006	Candida albicans SC5314 chromosome R, complete sequence	NC_032096.1				
63	16Sv3 (100ng)	Streptococcus pneumoniae (19F ; Z022)	Streptococcus pneumoniae strain RMV7 isolate RMV7domi chromosome 1, complete sequence	NZ_OV904788.1				

Conclusion

DeepChek® NGS workflows are polyvalent, platform-independent, and compatible with a multiplexed, pooled sequencing approach, which significantly enhances cost-efficiency without sacrificing analytical performance. The Complete Genomics G10-FR* emerges as a robust alternative to traditional systems like Illumina iSeq100, making routine clinical NGS faster, more accessible and scalable for laboratories handling diverse diagnostic applications.

References

- 1. Vellas, et al. Comparison of short-read and long-read next-generation sequencing technologies for determining HIV-1 drug resistance. J Med Virol. 2024
- 2. Martinez, et al. Advancing Drug Resistance Detection: Comparative Analysis Using Short-Read and Long-Read NGS Technologies. LabMed 2025
- 3. Mohamed, et al. From Capillary Electrophoresis to Deep Sequencing: An Improved HIV-1 Drug Resistance Assessment Solution Using In Vitro Diagnostic (IVD) Assays and Software. Viruses. 2023