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Abstract 

Background Cervical cancer screening programs are increasingly relying on sensitive molecular approaches as pri‑
mary tests to detect high‑risk human papillomaviruses (hrHPV), the causative agents of cervix cancer. Although hrHPV 
infection is a pre‑requisite for the development of most precancerous lesions, the mere detection of viral nucleic 
acids, also present in transient infections, is not specific of the underlying cellular state, resulting in poor positive 
predictive values (PPV) regarding lesional states. There is a need to increase the specificity of molecular tests for better 
stratifying individuals at risk of cancer and to adapt follow‑up strategies.

Methods HPV‑RNA‑SEQ, a targeted RNA next generation sequencing assay allowing the detection of up to 16 hrHPV 
splice events and key human transcripts, has previously shown encouraging PPV for the detection of precancerous 
lesions. Herein, on 302 patients with normal cytology (NILM, n = 118), low‑grade (LSIL, n = 104) or high‑grade squa‑
mous intraepithelial lesions (HSIL, n = 80), machine learning‑based model improvement was applied to reach 2‑classes 
(NILM vs HSIL) or 3‑classes (NILM, LSIL, HSIL) predictive models.

Results Linear (elastic net) and nonlinear (random forest) approaches resulted in five 2‑class models that detect HSIL 
vs NILM in a validation set with specificity up to 0.87, well within the range of PPV of other competing RNA‑based 
tests in a screening population.

Conclusions HPV‑RNA‑SEQ improves the detection of HSIL lesions and has the potential to complete and eventually 
replace current molecular approaches as a first‑line test. Further performance evaluation remains to be done on larger 
and prospective cohorts.

Keywords Human Papillomavirus (HPV), Molecular test, Screening, Precancerous lesions, Transcriptome, Next‑
Generation Sequencing (NGS)
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Background
Cervical cancer is currently the fourth cause of cancer 
in women globally, being responsible for approximately 
604,000 new cases and 340,000 deaths in 2020 (Sung 
et al. 2020). Nearly all cervical cancer cases are caused by 
sexually transmitted high-risk Human papillomaviruses 
(hrHPV). The International Agency for Research on Can-
cer recognized 17 HPV genotypes to be causal to invasive 
cervical cancer, with huge differences in their carcino-
genic strength (Wei et al. 2024). As of today, 12 hrHPV 
types are considered highly relevant and have been indi-
cated in the Target Product Profile recommendation by 
WHO (IARC. 2022; World Health Organization (WHO) 
2024). hrHPVs are etiological factors of several other 
cancers, including vulvar, penile, neck and head cancers 
(Schiffman et al. 2016), and are overall responsible for 5% 
of all human cancers (Estêvão et al. 2019).

The 8 kb-sized genome of hrHPV encodes five early 
proteins (E2, E4, E5, E6, E7) and 2 capsid proteins 
referred as late genes (L1, L2) (Schiffman et  al. 2016; 
McBride 2022). Viral infection initiates through microle-
sions in the cervix allowing hrHPV to enter the dividing 
basal layer of stratified squamous epithelia. Under the 
main control of the viral E2 protein, genes transcription 
is tightly regulated and varies over the course of tissue 
differentiation. The expression of the early genes E1, E2, 
E4, E5, E6 and E7 ensures viral genome replication and 
maintenance at relatively low levels (McBride 2022). 
Upon cell differentiation, the capsid proteins L1 and L2 
are expressed in the mid and upper layers of the epithe-
lium, assuring virions assembly and release of mature 
infectious virions (Schiffman et al. 2016; Woodman et al. 
2007).

More than 90% of HPV infections are transient and are 
cleared out by the host immune system within one year 
(Schiffman et  al. 2016). Oncogenesis is associated with 
persistent infection by hrHPV. Low grade Squamous 
Intraepithelial Lesions (LSIL, equivalent to Cervical 
Intraepithelial Neoplasia or CIN1) have high spontane-
ous regression rates (89.7% in Bruno et al. (2022), 88.5% 
in Ciavattini et  al.  (2017), while High grade Squamous 
Intraepithelial Lesions (HSIL, equivalent to CIN2 and 
CIN3) have lower regression rates (e.g. 47% in Ehret 
et al. (Ehret et al. 2023)) and can progress to cancer. The 
percentage of HSIL in screening populations remains 
low, typically below 1% (Cuzick et al. 2013), and the risk 
of precancerous lesions corresponding to CIN3 or worse 
(CIN3 +) in the general population is less than 0.15% 
over 5 years following a negative HPV test result (Perkins 
et al. 2023). The transition from a persistent and produc-
tive HPV infection to an oncogenic infection requires 
years to decades (Hu and Ma 2018). Thanks to this pro-
longed timeframe, the early detection and treatment 

of precancerous lesions has a strong medical benefit 
(Schiffman et  al. 2016; Schlecht et  al. 2003). However, 
early detection must show good positive predictive value 
(PPV) to avoid unnecessary interventions.

Cervical cancer screening programs vary among coun-
tries but often consist first in detecting hrHPVs using 
molecular tests, and then, in case of positivity, in cyto-
logical examination aiming at detecting abnormal cer-
vical cells (the Papanicolaou test) (Perkins et  al. 2023). 
DNA-based molecular tests are very sensitive and spe-
cific in detecting the presence of hrHPVs genomes. Yet, 
viral genome detection cannot distinguish between tran-
sient and clinically relevant infections and remains a poor 
predictor of underlying precancerous lesions. On the 
other hand, cytological examinations detect and classify 
lesions with good specificity. However, cytology lacks 
sensitivity (Haute Autorité de Santé 2019) and reproduc-
ibility because of variations in reader subjectivity. Thus, 
the visual confirmation of the presence of lesions in the 
cervix by a clinician through colposcopy remains neces-
sary, followed by histopathology conducted on biopsy in 
case of detectable lesion (Schiffman et al. 2016). Colpos-
copies only confirm one third of the precancerous or can-
cerous cases suspected by hrHPV detection and cytology 
(Ogilvie et al. 2018), illustrating the risk of overdiagnosis 
from screening programs, and associated follow up pro-
cedures, patient anxiety and screening costs (Hu and Ma 
2018). There is therefore a need for more effective triage 
tools to better stratify individuals at risk and reduce the 
number of unnecessary follow-up referrals.

RNA tests targeting E6/E7 transcripts have been pro-
posed as an alternative to DNA tests (Arbyn et al. 2022). 
Indeed, the persistent expression of E6 and E7 genes is 
one of the primary factors for cervical cancer progression 
(Estêvão et al. 2019; Moody and Laimins 2010). Among 
not fully understood other mechanisms, viral integration 
into the host genome is a frequent event which disrupts 
E1 and E2 transcription units, leading to an uncontrolled 
overexpression of E6 and E7 (McBride and Warburton 
2017; Kamal et  al. 2021). These two protein products 
are associated with several hallmarks of cancer (Schiff-
man et al. 2016; Estêvão et al. 2019) such as maintaining 
a continuous proliferative state (e.g. via the downregula-
tion of tumor suppressor gene TP53), overcoming cell 
cycle checkpoints (e.g. via the downregulation of tumor 
suppressor gene pRB, a major G1 checkpoint regulator), 
evading the host immunity, escaping cell death (e.g.via 
the upregulation of the human telomerase hTERT and 
downregulation of TP53) and promoting genomic insta-
bility (by the upregulation of APOBEC3 that leads to 
high mutation rate (Estêvão et al. 2019)).

There are currently numerous hrHPVs mRNA tests 
measuring the expression of E6/E7 available in the 
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market, but there is still no consensus on whether these 
mRNA tests have a better PPV than a combination of 
DNA testing and cytology (Arbyn et al. 2022; Cook et al. 
2017; Virtanen et al. 2017). The performances of mRNA 
tests for CIN2 + detection vary greatly and have been 
the subject of several studies. In a meta-analysis, Der-
bie et  al.  (2020) compared the diagnostic performance 
for CIN2 + of three of the most common mRNA tests, 
namely PreTect Proofer (PreTect AS, Norway), Aptima 
(Hologic, USA) and Quantivirus (DiaCarta, USA) in pop-
ulations referred for histology with high CIN2 + preva-
lence, using histology as a gold standard. They reported 
a median sensitivity ranging from 83.0% to 91.4% and 
a median specificity ranging from 46.2% to 73.0%. As a 
result, the mRNA tests have estimated PPVs ranging 
from 34.3% (Aptima) to 70.0% (PreTect Proofer). Arbyn 
et  al.  (2022) compared the accuracy of hrHPV DNA 
tests and mRNA tests for the detection of CIN2 + and 
CIN3 + during primary cervical cancer screening. They 
found that Aptima had similar cross-sectional sensitivity 
(relative sensitivity 0.98 [95% CI 0.95–1.01]) and slightly 
higher specificity (1.03 [1.02–1.04]) for CIN2 + and 
CIN3 + than DNA tests.Also, Aptima showed a long-term 
safety, defined both as the sensitivity for CIN3 + detec-
tion and the relative detection of CIN3 + among women 
who screened negative, comparable to that of DNA tests 
(Strang et al. 2021; Iftner et al. 2019). The choice of using 
mRNA tests in screening programs is therefore promis-
ing, albeit limited given the small increase in specificity 
of current mRNA tests compared to DNA tests (Dom-
browski et al. 2022). Moreover, even though it is accepted 
that the upregulated expression of E6/E7 is associated 
with disease progression (Duvlis et  al. 2015; Choi et  al. 
2023), E6 and E7 proteins are also expressed in produc-
tive yet transient infections during which the amount of 
E6/E7 mRNA may correlate with viral load, which makes 
the definition of a detection threshold complicated. 
In addition, the low prevalence of CIN2 + lesions in a 
screening population negatively affects the PPV. There 
is therefore a need for a novel generation of molecular 
diagnostic tests capable of distinguishing between tran-
sient and transforming infections with a better specific-
ity. Without such a test, a high number of unnecessary 
colposcopies will continue to be conducted.

We (Pérot et al. 2019) and others (Andralojc et al. 2022) 
have previously explored the principle of a molecular 
test capable of encompassing a more exhaustive view of 
the HPV transcriptome, with or without the addition of 
human transcripts (including oncogenes, tumor suppres-
sion genes, direct or indirect downstream effectors of 
HPV oncoproteins such as AKT1, BCL2, BRAF, CDH1, 
CDKN2A, CDKN2B, ERBB2, FOS, HRAS, KRAS, MET, 
MKI67, MYC, NOTCH1, PCNA, PTEN, RB1, STAT1, 

TERT, TOP2A, TP53, and WNT1 (Pérot et  al 2019)). 
The underlying assumption is that a balance of expres-
sion integrating all early and late HPV transcripts, whose 
ratio varies according to the state of cellular differentia-
tion, with or without considering the variation in human 
transcripts, could help distinguish more finely between 
transient and transforming infections. In practical terms, 
our targeted RNA next generation sequencing (NGS) 
assay, named HPV-RNA-SEQ, uses standard liquid-based 
cytology samples as input to detect the 12 high-risk HPVs 
as per the current WHO recommendation (HPVs 16, 18, 
31, 33, 35, 39, 45, 51, 52, 56, 58 and 59) plus 4 HPVs of 
lower prevalence (66, 68, 73, and 82) and quantify a wide 
set of HPV transcripts on splice regions. This approach 
showed encouraging PPV for the detection of HSIL in a 
previous cohort of 55 patients (Pérot et al 2019).

This work aimed to develop HPV-RNA-SEQ fur-
ther with machine learning models that take HPV and 
human transcripts expression as input, to classify squa-
mous intraepithelial lesions. To achieve this goal, we used 
a cohort of 302 patients aged between 25 and 65 years, 
with normal cytology (NILM, n = 118), low-grade (LSIL, 
n = 104), and high-grade squamous intraepithelial lesions 
(HSIL, n = 80). We first built 3-classes (NILM, LSIL, 
HSIL) and 2-classes (NILM vs HSIL) machine learn-
ing models based on transcriptomic information from 
hrHPV and human transcripts on a training set of data 
from 220 patients, and then validated the performance 
of the models on an independent validation set of 82 
patients.

Materials and methods
The Materials and Methods section is provided in the 
Supplementary Data.

Results
Lesion prediction with HPV‑RNA‑SEQ
HPV-RNA-SEQ data from 302 hrHPV DNA-positive cer-
vical swabs samples (Fig. 1) were analyzed to investigate 
the HPV transcriptome and a set of human transcripts 
as precancerous lesion predictors. We employed lin-
ear (elastic net) and nonlinear (random forest) methods 
to assess different variable combinations: (S) “spliced”, 
included specific HPV splice events found on HPV tran-
cripts; (uS) “Unspliced”, included specific HPV splice 
donor or acceptor sites in the absence of splice event; (H) 
“Human”, consisted of twenty-two human transcripts, 
including oncogenes. Their combined use was also 
explored: (S + uS) included HPV spliced and unspliced 
transcripts; (S + H) included HPV spliced transcripts and 
human transcripts; (uS + H) included unspliced HPV 
transcripts and human transcripts; (S + uS + H) included 
HPV spliced and unspliced transcripts plus human 
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transcripts. These set of variables were tested to distin-
guish between NILM, LSIL and HSIL (3-class models 
with random forest only), or to distinguish HSIL from 
NILM (2-class models with both elastic net and random 
forest), using a mixed reference combining histology 
and cytology results (see methods in the Supplementary 
Data). We compared the transcripts-based models to two 
control models based on the presence/absence of HPV 
(P) and the total number of HPV reads (T). Altogether, 
27 models were explored, described in Table 1 (see Sup-
plementary Table 5 for more detailed information). Con-
tingency tables and sample scores for each model are 
available in Supplementary Data 3.

Poor classification by control models
Control models based on the presence/absence of the dif-
ferent HPV genotypes (P model) and the proportion of 
total HPV reads in the sample (T model) generated poor 
performances (Table  1, Fig.  2). Indeed, the nonlinear P 

model yielded high specificity (93.3%) but very low sen-
sitivity (15.0%), whereas the linear P model yielded high 
sensitivity (80.0%) but low specificity (36.7%) (Table  1, 
Fig. 3). Based on the T predictor, both methods resulted 
in low sensitivity (50.0–65.0%) and low specificity (36.7–
43.3%), with accuracies no higher than a random classi-
fier (Fig. 2).

Poor classification by three‑class models (NILM, LSIL 
and HSIL)
The accuracy of 3-class models ranged from 30.0% to 
51.0%, and only the S model had an accuracy superior to 
that of a random classifier (95% CI, or P < 0.05) (Table 1, 
Fig.  2). The S + uS + H model had the highest sensitiv-
ity for HSIL (65.0%) and retained a high sensitivity for 
NILM (70.0%), with moderate specificity in both cases 
(66.0% and 60.0% respectively) but showed a low sensi-
tivity for LSIL detection (12.5%) (Table  2). Model pre-
diction based on spliced junctions (S model) yielded the 

Fig. 1 Study flow chart. Available clinical results from study cohort. Distribution of clinical outcome according to (1) cytology results, (2) histological 
results from a biopsy, and (3) histological results based on a conization procedure. Legend: NILM: Negative for Intraepithelial Lesion or Malignancy; 
ASC‑US: Atypical Squamous Cells of Undetermined Significance; LSIL: Low Grade Squamous Intraepithelial Lesion; HSIL: High Grade Squamous 
Intraepithelial Lesion; SCC: Squamous Cell Carcinoma (Invasive or Microinvasive); ADK: Adenocarcinoma (glandular cell); NC = non‑contributive
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highest sensitivity for NILM (80.0%) and the highest, 
but still low sensitivity for LSIL samples (34.4%), with a 
sensitivity for HSIL samples of only 35.0%. In fact, the S 
model grouped LSIL samples mostly within the NILM 
class. Over all models, the LSIL samples were distributed 
across the entire score range, demonstrating the hetero-
geneity within this class, and precluding the efficiency of 
three-class models.

Performances of two‑class models (NILM vs HSIL) using 
exclusively HPV transcripts predictors
Linear and nonlinear models were generated using the 
S and uS predictors. The linear and nonlinear S mod-
els yielded an overall high accuracy (70.0% to 80.0%, see 
Table 1, Fig. 2) associated with high specificity (86.7% to 
90.0% see Table  1, Fig.  3). However, the linear S model 
presented low sensitivity (40.0%). Interestingly, linear, 
and nonlinear uS models had high specificity (76.7% 
to 80.0%) and moderate sensitivity (50.0% to 60.0%), 
resulting in moderate overall accuracy (68.0% to 70.0%) 
(Table 1, Fig. 3). By combining the S + uS predictors, lin-
ear and nonlinear approaches resulted in models with 
high specificity (73.3% to 86.7%).

As previously, the linear approach had lower sensitivity 
(50.0%) than the nonlinear approach (80.0%). Compared 
to the previously identified high performance nonlinear 
S model (Se 70.0%, Sp 86.7%) based on spliced variants, 
the nonlinear S + uS model had comparable high perfor-
mances, although with a tendency, albeit non-significant, 

for higher sensitivity (80.0%) and lower specificity 
(73.3%).

Both models (nonlinear S and S + uS) had accuracies 
significantly higher than a random classifier (Fig.  2). 
They are here considered as equally promising models 
due to their similar performance levels, as demonstrated 
by performances values falling within each other’s con-
fidence intervals (e.g. see accuracy in Fig.  2). Thus, the 
most promising 2-class models based exclusively on 
HPV transcripts were the nonlinear S (accuracy = 80.0%, 
Se = 70.0%, Sp = 86.7%) and S + uS (accuracy = 76.0%, 
Se = 80%, Sp = 73.3%) models (Fig. 3).

Performances of two‑class models (NILM vs HSIL) 
with both HPV and human transcripts predictors
Next, we investigated how human transcripts alone (H 
model), or in combination with HPV transcripts (S + H, 
uS + H, S + uS + H) could classify NILM and HSIL. The 
use of human transcripts alone was associated with high 
sensitivity (75.0–85.0%) but low specificity (26.7%) for 
both linear and nonlinear models (Table 1, Fig. 3), result-
ing in poor performances with PPV and accuracy no 
greater than 50.0% (Table 1, Fig. 2), making this approach 
unattractive. Combining human transcripts with either 
spliced transcripts (S + H) or unspliced transcripts 
(uS + H) resulted in higher accuracy for linear models 
(76.0–78.0%) but moderate accuracy for nonlinear mod-
els (60.0–64.0%) (Fig. 2).

Fig. 2 Models overall performances on validation set. 3‑class and 2‑class models’ accuracy are presented for all models trained. Accuracy 
was computed along with 95% Confidence interval according to prediction on the validation set. Red dotted line represents the average 
accuracy for a random classifier, computed through simulation (1000 random shuffle of predictions for the validation set). Models for which 
the accuracy is significantly higher than the no information rate are identified with their significance level: * for pvalue < 0.05; ** for pvalue < 0.01. 
Set of variables: S: “Spliced”, uS: “Unspliced”, H: “Human”, S + uS: “Spliced + Unspliced”, S + H: “Spliced + Human”, uS + H: “Unspliced + Human”, S + uS + H: 
“Spliced + Unspliced + Human”, P: “Presence of HPVs”, T:”Total HPV sequence count”
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The most performant nonlinear model using human 
transcripts as predictors was obtained in combina-
tion with viral transcripts (S + us + H) and resulted 
in high sensitivity (80.0%) and moderate specificity 
(66.7%) (Table  1, Fig.  3). This result should be ana-
lyzed in regard with the previously described nonlinear 
S + uS model that presented higher specificity (73%) 
while maintaining similar sensitivity (80%). The linear 
approach produced high performance S + uS + H model 

with a sensitivity of 80.0% and a specificity of 76.7% 
(Table 1, Fig. 3).

Models including human transcripts predictors but 
excluding one of the HPV transcript predictors (S or uS) 
had nearly equivalent performances as the S + uS + H 
model (performance values being within their confidence 
intervals, see Figs.  2 and 3). Although not statistically 
significant, the uS + H predictor set produced a model 
demonstrating a tendency towards higher sensitivity 

Fig. 3 Specificity and sensitivity of classifications models. Sensitivity and Specificity were computed on validation set for all 2‑class models, 
along with 95% confidence interval. Thresholds at 0.5 for both metrics are shown in red, and a focus is made on the 5 models that show best 
performance and compromise between Sp and Se (full dots). Set of variables: S: “Spliced”, uS: “Unspliced”, H: “Human”, S + uS: “Spliced + Unspliced”, 
S + H: “Spliced + Human”, uS + H: “Unspliced + Human”, S + uS + H: “Spliced + Unspliced + Human”, P: “Presence of HPVs”, T:”Total HPV sequence count”
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(Se = 85.0%, Sp = 73.3%), while the S + H combination 
resulted in a model leaning towards greater specificity 
(Sp = 80.0%, Se = 70.0%) (Table 1, Fig. 3).

Selecting the most performant models: five models 
outperform a random classifier
Among the 27 tested models, five models exhibited high 
overall performances, with prediction accuracy surpass-
ing those of a random classifier (95% CI, or P < 0.05) (see 
Fig. 2). The S and S + uS nonlinear models, and the S + H, 
uS + H and S + uS + H linear models (shown in full dots in 
Fig. 3) were considered as equally promising, given that 
their accuracy levels align within each other’s confidence 
intervals (e.g. see accuracy in Fig.  2). The contingency 
tables for the five selected models are shown in Table 3. 
The S random forest model showed the highest specific-
ity (Sp 86.7%) and PPV (PPV 77.8%) across all models. 
The uS + H elastic net model had the highest sensitiv-
ity (Se 85.0%), with an overall PPV of 68.0%. Prediction 
scores for validation samples through the five best mod-
els can be found in Supplementary Figs. 5 and 6. Of inter-
est, the same individual samples tend to be misclassified 
by the five best models (Supplementary Fig. 5). Most spe-
cifically, within the validation set only, five NILM sam-
ples and four HSIL were classified by at least four models 
as HSIL and NILM, respectively.

A subset of variable predictors of importance
The importance of variable predictors contribut-
ing to at least one of the five best models is shown 
in Fig.  4 and Table  4. The Table  4 also shows elastic 
net coefficients for linear models. A total of nine-
teen human transcripts (19/22), seven HPV spliced 
regions (7/25) and six HPV unspliced transcripts 
(6/15) were informative for at least one of the five 

selected models. Among the spliced transcripts, SD2-
SA6 was the most informative for three over four mod-
els that included S, except for the S + uS + H elastic 
net model that put more weight in the information 
carried by the SD2-SA9 spliced transcript (Fig.  4). 
Among unspliced transcripts, the SD5 was one of the 
most important variables for all best models includ-
ing uS, followed closely with SD3. Finally, among the 
human transcripts, all three elastic-net models put 

Table 2 Contingency tables and performances of HPV‑RNA‑SEQ models for the prediction of HSIL, LSIL and NILM

Model Reference HSIL Pe, % LSIL Pe, % NILM Pe, %

S + uS + H HSIL LSIL NILM Se 65 Se 12.5 Se 70

 HSIL 13 12 9 Sp 66.1 Sp 96 Sp 59.6

 LSIL 2 4 0 PPV 38.2 PPV 66.7 PPV 50

 NILM 5 16 21 NPV 85.4 NPV 85.4 NPV 77.5

S HSIL LSIL NILM Se 35 Se 34.4 Se 80

 HSIL 7 1 1 Sp 96.8 Sp 74 Sp 51.9

 LSIL 8 11 5 PPV 77.8 PPV 45.8 PPV 49

 NILM 5 20 24 NPV 82.2 NPV 63.8 NPV 81.8

S + uS HSIL LSIL NILM Se 55 Se 18.8 Se 85.7

 HSIL 11 5 3 Sp 87.1 Sp 82 Sp 59.6

 LSIL 4 6 5 PPV 57.9 PPV 40 PPV 50

 NILM 5 21 22 NPV 85.7 NPV 61.2 NPV 77.5

Table 3 Contigency tables and performances of HPV‑RNA‑SEQ 
models for the prediction of high‑grade cytology

Reference HSIL Pe, %

S + uS + H, Se 80.0 (56.3–94.3)

elastic net HSIL NILM Sp 76.7 (57.7–90.1)

 HSIL 16 7 PPV 69.6 (47.1–86.8)

 NILM 4 23 NPV 85.2 (66.3–95.8)

uS + H, Se 85.0 (62.1–96.8)

elastic net HSIL NILM Sp 73.3 (54.1–87.7)

 HSIL 17 8 PPV 68.0 (46.5–85.1)

 NILM 3 22 NPV 88.0 (68.8–97.5)

S + uS Se 80.0 (56.3–94.3)

random forest HSIL NILM Sp 73.3 (54.1–87.7)

 HSIL 16 8 PPV 66.7 (44.7–84.4)

 NILM 4 22 NPV 84.6 (65.1–95.6)

S, Se 70.0 (45.7–88.1)

random forest HSIL NILM Sp 86.7 (69.3–96.2)

 HSIL 14 4 PPV 77.8 (52.4–93.6)

 NILM 6 26 NPV 81.3 (63.6–92.8)

S + H, Se 70.0 (45.7–88.1)

elastic net HSIL NILM Sp 80.0 (61.4–92.3)

 HSIL 14 6 PPV 70.0 (45.7–88.1)

 NILM 6 24 NPV 80.0 (61.4–92.3)
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more importance in expression data of PTEN, KRAS 
and NOTCH1 for the classification. The uS + H model 
also assigned significant importance in the ERBB2 
expression (Fig.  4). The overexpression of specific 
HPV or human transcripts, such as spliced SD2-SA9, 
SD2-SA6, SD2-SA7, unspliced SD5 and SD3, and 
human NOTCH1 and CDKN2A were associated with 
high grade lesions (see coefficient values for elas-
tic net models in Table  4 and Supplementary Fig.  7). 
Other transcripts were associated with the absence of 
lesion (NILM), like PTEN, KRAS, TOP2A, SD1_SA1 
(HPV early) and SD5_SA9 (HPV late). Supplementary 
Table  6 and Supplementary Data 4 include complete 
information on importance and elastic net coefficients 
across all explored models. Heatmap figures on vari-
able importance and elastic-net coefficients for models 
based on HPV presence/absence can be found in Sup-
plementary Fig. 8 and 9, respectively.

Distribution of LSIL samples classification by the five best 
two‑class models
LSIL samples, which were not used for training and val-
idation of 2-class models, were classified into NILM or 
HSIL category by each of the five best models. Sample 
scores were distributed along the entire scoring range 
(Supplementary Figs. 10 & 11) with an average of 63.2% 
of LSIL samples classified as NILM and an average of 
36.8% of LSIL samples classified as HSIL. In fact, the S 
model grouped LSIL samples mostly within the NILM 
class. Over all models, the LSIL samples were distrib-
uted across the entire score range, demonstrating the 
heterogeneity within this class, and precluding the effi-
ciency of three-class models.

Fig. 4 Features predictive value through all 2‑class models. Heatmap representing the importance (%) of each feature (rows) used for training 
models. Three sets (unspliced, spliced and oncogenes) were evaluated through the different trained models: highest importances in prediction 
are represented in dark blue whereas features that were less decisive in predicting model outcome are shown in off‑white. White features were 
either excluded in the set or removed during feature selection. Methods (columns) are ordered by Hierarchical clustering method, according 
to Ward D2 criterion. Elastic net method is represented in violet and random forest in green. Set of variables: S: “Spliced”, uS: “Unspliced”, H: “Human”, 
S + uS: “Spliced + Unspliced”, S + H: “Spliced + Human”, uS + H: “Unspliced + Human”, S + uS + H: “Spliced + Unspliced + Human”
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Predicted positive predictive value of RNA‑based HPV 
molecular tests in a population with different prevalence 
rates
The calculated PPVs for HSIL detection in a screening 
population composed of an unknown, variable per-
centage, but less than 1% of HSIL lesions (Cuzick et al. 
2013) are presented in Fig. 5 for the five selected mod-
els, along with the calculated PPVs of the commercially 
available RT-PCR-based molecular tests Aptima (Der-
bie et  al. 2020; Macedo et  al. 2019), PreTect Proofer 
(Derbie et  al. 2020), Quantivirus (Derbie et  al. 2020) 
and the targeted RNA NGS-based test under develop-
ment from Predica (Andralojc et  al. 2022). PPV were 
calculated from the pooled or median Se and Sp values 

reported in the referenced studies. Results showed 
that the S + H model had inferior PPV than commer-
cial tests, while the S + uS model had PPV superior to 
that of Aptima (Derbie et al. 2020; Macedo et al. 2019) 
and Quantivirus (Derbie et  al. 2020) (Fig.  5). The S, 
S + uS + H and uS + H models showed superior PPV to 
all five listed HPV tests. Notably, the S model had the 
higher PPV, suggesting that this model could compete 
with existing commercial tests, such as Aptima which is 
currently the most widely used RNA test on the market.

Table 4 Elastic net coefficients, variable importance for elastic net and random forest models

S + uS + H (en) uS + H (en) S + H (en) S (rf) S + uS (rf)

Predictor Coef Imp Coef Imp Coef Imp Imp Imp

PTEN_E8E9 −0.890 79.676 −1.446 81.451 −0.689 100.000 nd nd

KRAS_E3E4 −0.718 64.229 −1.247 70.238 −0.297 43.099 nd nd

SD1_SA1 −0.313 28.033 nd nd 0 0 16.997 2.005

SD5_SA9 −0.286 25.579 nd nd 0 0 ns ns

TOP2A_E21E22 −0.262 23.443 0 0 0 0 nd nd

SD4 −0.241 21.585 −0.528 29.770 nd nd nd ns

STAT1_E18E19 −0.140 12.534 −0.801 45.135 0 0 nd nd

SD3_SA6 −0.046 4.160 nd nd 0 0 0 6.182

CDH1_E10E11 −0.029 2.632 −0.595 33.504 0 0 nd nd

BCL2_E2E3 −0.006 0.493 −0.373 21.008 0 0 nd nd

SD2_SA5 0 0 nd nd 0 0 36.304 0

SD1 0 0 −1.487 83.796 nd nd nd ns

AKT1_E2E3 0 0 −0.617 34.758 0 0 nd nd

MET_E2E3 0 0 −0.135 7.614 0 0 nd nd

SD6 0 0 0 0 nd nd nd 17.657

MKI67_E6E7 0 0 0.144 8.101 0 0 nd nd

TERT_E10E11 0 0 1.114 62.751 0 0 nd nd

RB1_E22E23 0.011 0.953 0.158 8.909 0 0 nd nd

SD2 0.029 2.588 0.074 4.197 nd nd nd 14.132

HRAS_E2E3 0.038 3.415 0 0 0 0 nd nd

PCNA_E4E5 0.063 5.615 0.432 24.317 0 0 nd nd

TP53_E4E5 0.110 9.839 0.122 6.884 0 0 nd nd

WNT1_E2E3 0.262 23.465 0.044 2.498 0 0 nd nd

ERBB2_E11E12 0.286 25.621 1.481 83.423 0 0 nd nd

MYC_E1E2 0.359 32.112 0.747 42.088 0.038 5.545 nd nd

CDKN2A_E1E2 0.379 33.924 0.572 32.252 0.186 26.963 nd nd

SD3 0.381 34.062 1.299 73.171 nd nd nd 16.859

NOTCH1_E31E32 0.397 35.540 1.262 71.095 0.344 49.902 nd nd

SD2_SA7 0.421 37.719 nd nd 0.368 53.447 8.196 ns

SD2_SA6 0.479 42.859 nd nd 0.684 99.265 100.000 100.000

SD5 0.505 45.178 1.775 100.000 nd nd nd 17.070

SD2_SA9 1.117 100.000 nd nd 0.003 0.440 ns ns
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Discussion
HPV-RNA-SEQ is a targeted RNA sequencing approach 
with the capacity to detect and quantify specific spliced, 
but also unspliced hrHPV RNA, as well as some key 
human transcripts (Pérot et al. 2019). In contrast to other 
RNA tests focusing on one or two specific mRNA, the 
novelty of HPV-RNA-SEQ lies in its ability to embrace 
a broad vision of the transcriptome through the early 
and late transcripts, making possible to compute a bal-
ance of expression into a predictive score. As an exam-
ple, for HPV16, HPV-RNA-SEQ can detect 14 unique 
splice junctions, plus 11 unspliced events (Supplemen-
tary Table 1). A more in-depth description of the design 
has been published previously (Pérot et  al. 2019). The 
high level of multiplexing allowed by NGS extended the 
detection principle to 16 hrHPV into a single experiment, 
which makes HPV-RNA-SEQ unique.

Machine learning-based predictions integrating sev-
eral combinations of HPV and human transcripts were 
undertaken to reach 3-classes (NILM, LSIL, HSIL) 
and 2-classes (NILM vs HSIL) models, using either 
linear (elastic net) or nonlinear (and random forest) 
approaches, starting from 302 samples. Despite expec-
tations, and significant differences in expression profiles 
between the three classes (Supplementary Data 2 and the 
Supplementary Appendix 1), it was not possible to reach 
a performant classification with 3-classes models (Table 1 

and Fig. 2). In contrast, both linear and nonlinear meth-
ods produced promising 2-classes models, leading to a 
selection of five top models with high PPV. These mod-
els relied on different predictor variables combinations: 
random forest models performed better when only HPV 
predictors were used, while elastic net models were more 
performant at combining HPV and human transcripts 
through the S + H, uS + H, S + uS + H predictors (Table 1, 
Figs. 2 and 3).

Predicting HSIL using only HPV transcripts
The two nonlinear random forest models that per-
formed well for the detection of high-grade lesions 
both gave significant weight to the SD2-SA6 predictor 
(Imp. = 100 in Table  4 and Fig.  4). This predictor had a 
significant increase in expression from NILM to HSIL 
(Supplementary Data 2). Chen et  al. (2014) described 
the HPV16 transcriptome from cervical clinical samples 
and described six different transcript species presenting 
the SD2-SA6 signature, namely: A, B and C with cod-
ing capacity for E6 and E7, Q corresponding to E1^E4, 
and the late R and S forms corresponding to E1^E4(L1), 
E1^E4(L2). Equivalent transcripts have been demon-
strated experimentally for HPV18 (Wang et  al. 2011) 
and predictions of equivalent positions can be made for 
other hrHPVs (Pérot et al. 2019). Regarding the A, B and 
C transcripts with coding capacity for E6 and E7, Chen 

Fig. 5 Positive predictive value estimates function of HSIL prevalence: Positive predictive value for the five best models is represented 
along with some other references from literature. PPV was computed as a function of assumed HSIL prevalence in the population (x‑axis). 
In addition, uncertainty bound to the ratio of LSIL relative to HSIL was considered (bands around the line) and this ratio was assumed to be 
lying between 1 and 4 (Supplementary Data 5). Set of variables: S: “Spliced”, S + uS: “Spliced + Unspliced”, S + H: “Spliced + Human”, uS + H: 
“Unspliced + Human”, S + uS + H: “Spliced + Unspliced + Human”. Statistical methods: rf: “random forest”, en: elastic net
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et  al.  reported an increase in the number of fragments 
per kilobase of transcript per million fragments mapped 
(FPKM) from CIN2 [0.0–29.3 FKPM], CIN3 [2.8–39.7 
FPKM] to SCC [21.4–345.9 FPKM] Chen et  al. (2014), 
which appears in line with prior knowledge on the over-
expression of E6 and E7 in the cellular transformation 
process (McBride and Warburton 2017; Kamal et  al. 
2021). The alternative transcript E1^E4 was reported to 
be the most abundant mRNA expressed during produc-
tive infection and is considered as a marker of basal-to-
epithelial infected cells differentiation (Doorbar et  al. 
2005). Its quantitative variation, evaluated in the work 
of Chen et  al., appears more balanced from CIN2 (974 
FKPM), CIN3 (49 FPKM) to SCC (238 FPKM). Finally, 
the expression of L1 or L2 as a side product of SD2-SA6 
(variants R and S) were found in CIN2 [3–63 FPKM] but 
not in CIN3 and SCC Chen et al. (2014). Although it is 
difficult to state with certainty which of these 6 mRNA 
variants are present or not in the samples based solely 
on the SD2-SA6 predictor, it seems likely that the strong 
increase in expression of SD2-SA6 among categories, and 
the identification of SD2-SA6 as the most important pre-
dictor for the two best random forest models, reflects the 
involvement of E6 and E7 in transforming infection.

The splice signature SD1-SA1 showed an increased 
expression from NILM to HSIL (Supplementary Data 
2), and was also informative, albeit to a much lesser 
extent, for each of the two best random forest models 
(Imp. = 16.9 and 2.0 in Table  4 and Fig.  4). This splice 
event is located within the E6 Open Reading Frame 
(ORF), resulting in truncated versions of E6 mRNA tran-
script species, termed E6*, and producing E6 shortened 
products (Andralojc et al. 2022; Chen et al. 2014; Zheng 
et al. 2006). This signature is present in 3 early transcripts 
(B, G, L) and one late transcript with coding potential for 
E7(L1) (Chen et  al. 2014). Due to an increased distance 
between E6* stop codon and E7 start codon, the E6* iso-
forms are thought to favor E7 translation (Chen et  al. 
2014). Although the association with cancer progres-
sion is still controversial, the proportion of E6* isoforms 
comparing with full length E6 have been reported to be 
higher in higher grade precancerous lesions and tumor 
samples compared to NILM and LSIL, suggesting that 
E6* isoforms might play a role in cancer development 
(Cerasuolo et  al 2020). Of note, Andralojc et  al. (2022) 
found E6* isoforms to be expressed in 13%, 30%, and 
50–60% in NILM, LSIL and HSIL samples, respectively, 
which is reminiscent of our observations (Supplementary 
Data 2). Although they observed a tendency, the sensitiv-
ity for HSIL detection based uniquely on E6* expression 
was very low (Se 52%) (Andralojc et  al. 2022) and they 
needed more data to confirm if E6* expression is related 
to disease progression.

Finally, the SD2-SA5 signature, which increased in 
expression from NILM to HSIL (Supplementary Data 
2), has coding capacity for E6 or E7 (Chen et  al. 2014) 
and was informative only in the S random forest model 
(Imp. = 36.3 in Table  4 and Fig.  4). The SD3-SA6 signa-
ture, which shows an increase in HSIL in the training 
set only (Supplementary Data 2), was informative only 
in the S + uS random forest model (Imp. = 6.1 in Table 4 
and Fig. 4). The SD3-SA6 predictor constitutes a complex 
marker present in late L1 transcripts species (Chen et al. 
2014; Zheng et  al. 2006) but also associated with cod-
ing potential for E2C and E5 proteins. Chen et al. (2014) 
reported equivalent levels of E5 proteins in NILM and 
HSIL, while L1 was mostly expressed in lower grades and 
normal samples, and very rare in CIN3 and cancer. Taken 
together, these observations contribute to better deline-
ate a fundamental understanding of the models.

Predicting HSIL using a combination of HPV and human 
transcripts
Three linear elastic net models gave encouraging per-
formances for the detection of precancerous lesions 
(Table  1, Figs.  2, 3). Interestingly, all three used a com-
bination of viral and human transcriptomic signals. The 
S + uS + H model yielded a sensitivity of 80.0% and a 
specificity of 76.7%, while the uS + H model attained a 
sensitivity of 85.0% and a specificity of 73.3%. Predict-
ing only with viral spliced and human transcripts (S + H) 
led to Se = 70.0% and Sp = 80.0% (Table  1). Andralojc 
et  al. (2022) recently explored RNA-seq data from 15 
hrHPVs (E2, E6/E7 and E6*) and 429 human genes to 
generate a nonlinear predictive model distinguish-
ing NILM (no CIN) from HSIL + (CIN2 +) samples. In 
agreement with our findings, they found that the com-
bined use of HPV and human data is advantageous for 
HSIL detection, reporting a sensitivity of 85 +−8% and 
specificity of 72 +—13%. In our 2-classes linear models 
detecting HSIL, a significant weight, shown by positive 
coefficients in Table  4, was given to viral markers SD2-
SA6 (Imp = 99.2 in S + H) whose presumed importance 
in transformation has been discussed before, but also 
to SD2-SA9 (Imp. = 100.0 in S + uS + H) and SD2-SA7 
(Imp. = 100.0 in uS + H and 53.4 in S + H) (Table  4 and 
Fig. 4). SD2-SA9 and SD2-SA7 transcripts had low preva-
lence and appear poorly correlated with other human 
or HPV transcripts, which indicates singular expression 
profiles (Supplementary Data 2). SD2-SA9 is specific to 
a single HPV transcript species, responsible for encod-
ing the L1 capsid protein (Chen et al. 2014). The expres-
sion of L1 transcripts was found in higher quantities in 
CIN2 [82.9 FPKM] than in CIN3 and cancer samples 
[1.3–5.5 FPKM] in Chen et  al. (2014), which is consist-
ent with the expected reduction in the average expression 
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level of this late gene during transformation. Neverthe-
less, the detection of a sporadic, possibly basal level of L1 
expression in advanced lesions, which may simply reflect 
cell heterogeneity, translates into a significant weighting 
of this atypical predictor in our best elastic net models. 
SD2-SA7 was found only in LSIL and HSIL, but rarely in 
our dataset, which impedes any further discussion of its 
expression profile (Supplementary Data 3). On the other 
hand, HPV transcripts and splice markers that contrib-
uted the most to the NILM linear signature (marked by 
negative coefficients in Table4) included markers of both 
productive (SD5-SA9 Imp. = 25.5 in S + uS + H; SD3-
SA6 Imp = 4.6 in S + uS + H) and transforming (SD1-SA1 
Imp. = 28.0 in S + uS + H) infection. The involvement of 
SD1-SA1, whose expression level increases from NILM 
to HSIL (Supplementary Data 2), may appear to be con-
tradictory. This, however, can be tempered by the fact 
that, unlike the S + uS + H, the S + H linear model did not 
retain the SD1-SA1 marker, as opposed to the mechanis-
tically relevant SD2-SA6 marker which was used by both 
the S + uS + H and the S + H models for HSIL detection. 
Together with the involvement of SD3-SA6 shown previ-
ously to be a complex marker, and the non-homogeneous 
expression profiles observed in the training and valida-
tion sets for SD5-SA9 (Supplementary Data 2), this may 
point toward a lower robustness of the S + uS + H model 
over the S + H model.

Regarding human transcripts, features associated to 
HSIL included the pro-tumor genes MYC (Imp. = [5.5–
42.0]), ERBB2 (Imp. = [25.6–83.4]), WNT1 (Imp. = [2.4–
23.4]), HRAS (Imp. = 3.4 in S + uS + H) and TERT 
(Imp. = 62.7 in uS + H), the proliferation marker PCNA 
(Imp. = [5.6–24.3]), NOTCH1 (Imp. = [35.5–71.0]) 
which is involved in cell fate determination and differen-
tiation, but also the tumor suppressor genes CDKN2A 
(Imp. = [26.9–33.9]), TP53 (Imp. = [6.8–9.8]), RB1 
(Imp. = [0.9–8.9]) (Fig. 4). Of note, CDKN2A encodes for 
two tumor suppressor proteins, p16INK4A and p14ARF 
(Ivanov et al. 2021) and that P16 protein is already used 
as a progression marker in pre-cancerous lesions detec-
tion (Arip et  al. 2022). Here we found CDKN2A to be 
associated to HSIL, similarly to authors who reported it 
to be upregulated in HSIL + samples (Choi et al. 2018). In 
addition, (Ivanov et al. 2021) generated predictive linear 
classifiers for the detection of HSIL lesions using a com-
bination of CDKN2A gene and miRNAs, with reported 
sensitivity of 89% and specificity of 84%. The human 
regions contributing the most to the NILM molecu-
lar signature included genes known for their tumor 
suppressor effects (PTEN Imp. = [79.6–100]; CDH1 
Imp. = [2.6–33.5]), but also pro-tumor related genes (e.g. 
cellular proliferation markers: KRAS (Imp. = [43.0–70.2]), 
TOP2A (Imp. = 23.4 in S + uS + H), MK167 (Imp. = 8.1 in 

uS + H), AKT1 (Imp. = 34.7 in uS + H), MET (Imp. = 7.6 
in uS + H); and BCL2 (Imp. = [0.4–21.0]), a gene involved 
in the inhibition of apoptosis (Table 4, Fig. 4). Addition-
ally, STAT1 (Imp. = [12.5–45.1]), a gene associated with 
immune response and cellular proliferation, also contrib-
uted to the NILM signature. Such patterns reinforce the 
idea of a high heterogeneity and complexity of cellular 
responses and a probable mix of cells harboring differen-
tiate states of viral infection, within the same polyclonal 
cell sample.

LSIL, a cytological class displaying high molecular 
heterogeneity
It was not possible to distinguish properly all three 
cytological classes (HSIL, LSIL and NILM) through a 
3-classes model, due to the difficulty of predicting the 
intermediate LSIL category (Table  1). A posteriori, we 
sought to apply our two-class models (NILM vs HSIL) to 
LSIL samples with the underlying hypothesis that they 
will present a continuum of scores between NILM and 
HSIL. The results presented in Supplementary Figs. 10 & 
11 and the Supplementary Appendix 2 showed a contin-
uum of scores, going from zero to nearly 1, which in turn 
suggests a high molecular heterogeneity of LSIL samples. 
Several studies showed intermediary levels of various 
progression markers in LSIL samples (between NILM 
and HSIL samples), e.g. E6/E7 expression levels gradu-
ally higher in higher grades (e.g. 15% NILM, 40% ASCUS, 
45% LSIL, 80% HSIL in Duvlis et al. 2015), similar levels 
of E6* isoforms expression in “no CIN” and LSIL samples 
then progressively higher in HSIL and cancer (Andralojc 
et  al. 2022), and the productive infection marker L1 
(immunoreactivity) higher in NILM and progressively 
lower in LSIL, HSIL and cancer (Choi et  al. 2023). This 
limitation in defining a homogeneous LSIL category at 
the molecular level would therefore invite revisiting the 
classification criteria for low-grade lesions, currently 
established on morphological observations at cytological 
examination.

The added value of HPV‑RNA‑SEQ
HPV-RNA-SEQ can be implemented using a liquid-based 
cytology medium, requiring no significant changes in 
gynecological sampling practices. We showed in a previ-
ous work that RNA remained stable in PreservCyt (Hol-
ogic) solution at room temperature up to three weeks 
post-sampling (Pérot et al. 2019). This time frame is com-
patible with grouping and carrying up a set of samples to 
a technical platform for NGS sequencing. In areas with 
limited medical or molecular biology infrastructures, this 
timing could also be compatible with sending self-col-
lected samples at room temperature, provided the ana-
lytic performances of the test is not affected under these 
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sampling conditions, which remains to be tested. While it 
is true that NGS-based procedures are technically more 
challenging than PCR-based tests, with an end-to-end 
turnaround time from sample processing to result taking 
typically between 2 and 4 days, the main benefit of HPV-
RNA-SEQ lies on its potential to increase specificity, and 
thus the PPV for detecting precancerous lesions (Fig. 5, 
Supplementary Data 5) over other HPV molecular tests. 
Currently, when primary screening leads to the identi-
fication of hrHPV in the general population, a test with 
high specificity, such as cytology, is needed for the triage 
of women at risk of transforming infection, before col-
poscopy (Cuzick et al. 2013; Schneider et al. 2000). HPV-
RNA-SEQ can overcome this limitation by providing 
information on the presence of hrHPV and classifying the 
risk of transformation in a single molecular procedure. 
Two major limitations of our study, however, are that 
we were not able to make a direct comparison of HPV-
RNA-SEQ with conventional HPV RNA or DNA tests, 
and that all samples were selected to be positive for HPV 
DNA. These limits can be in a second step addressed as 
part of a clinical study dedicated to comparing perfor-
mance between several tests in standard screening pro-
grams, in which HPV-negative samples, and possibly 
tumor samples as well, will be included. More generally, 
the prognostic value of the HPV-RNA-SEQ test should 
be considered and assessed using a prospective cohort 
for which the evolution towards lesions and cancer, or 
regression and elimination of HPV is tracked over time. 
If studies on larger cohorts confirm that the PPV of HPV-
RNA-SEQ surpasses that of HPV RNA tests, as suggested 
by this work, HPV-RNA-SEQ could be recommended 
as a triage test and potentially replace cytology, or even 
serve as the primary molecular test.
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