Detection of Low-Frequency Drug-Resistant Variants of HIV-1 using Whole Genome Sequencing

Ali M^{*1}, Zia Z¹, Aziz K¹, Bengone-Abogourin J², Komaiha O³, Alawa R, ³, Mustafa A⁴, Al Qasser M¹

¹Virology Unit, Department of Laboratory, Mubarak Al Kabeer Hospital, Ministry of Health, Kuwait; ² ABL Diagnostics 42, rue Olivier Métra - Bât E1, 75020 Paris, France; ³Bader Sultan & Brothers Co. W.L.L., Kuwait, Kuwait; ⁴Microbiology Department, Faculty of Medicine, Health Science Centre, Kuwait University, Kuwait22

Introduction and Objectives

Highly Active Antiretroviral Therapy (HAART) has substantially improved the survival of patients with HIV-1, but successful therapy requires long-term suppression of viral replication, which may be prevented by impaired host immunity, suboptimal drug penetration in certain tissue compartments and incomplete adherence to therapy. When viral replication continues despite treatment, the high mutation rate of HIV-1 enables resistant variants to develop. Sequencing resistant variants has enabled targeted changes in treatment, which has resulted in greater reductions in viral loads than with standard care (undetectable HIV load in 32% vs 14% of patients after six months). Thus, the increasing number of drugs in development that interact with different proteins that are encoded by viral genes scattered across the genome, requires the Whole Genome Sequencing (WGS) which simultaneously captures all resistant variants and removes the need to design and optimize PCR assays for the detection of resistance to new drugs. WGS can also provide information on antigenic epitopes, virus evolution in a patient over time, and evidence of recombination between strains. To date, there has been very little direct comparison between the Sanger sequencing and WGS methods for viral genome sequencing in clinical practice. Therefore, our objective was to evaluate the results obtained from Sanger sequencing HIV-1 (*Pol, RT, INT*) genomic-regions vs. the HIV-1 WGS performance in terms of drug-resistant variants. This comparison may help in better understanding therapy response and to gain insights into the management of HAART.

Results and Discussion

Sequencing was achieved with a genome coverage and depth of >90% of the HIV genomic regions covered by >100 reads/site. Subtyping determination performed through homology testing of consensus sequence generated from all the reads mapped to HIV genomic regions and compared to an updated set of reference sequences. Duplicated samples in two different NGS runs (WGS and Targeted Sequencing) were 100% homologous. NGS detected all the mutations found by Sanger sequencing in 60% of the samples and identified additional lowfrequency resistance variants which wasn't reported by Sanger sequencing in 40% of samples, as shown in **Table 1**.

Tota	al Viral Load		HIV-1 NGS Whole Gen	ome Results (MK	Drug Resistance	Comparison to	Comparison to			
No.	cp/mL	Subtype	RT Mutations of	PR Mutations	INT Mutations	Data Interpretation	Targeted NGS	Sanger		
			Interest	of Interest	of Interest			Sequencing		
1	12527 cp/mL	CRF15_01B	No mutation	No mutation	T66A	HR: Elvitegravir	Match	Mismatch		
						IR: Raltegravir				
2	64620 cp/mL	CRF15_01B	A98G	No mutation	No mutation	HR: Efavirenz	Match	Mismatch		
			K103N			HR: Nevirapine				
			P225H			IR: Doravirine				
3	91883 cp/mL	CRF43_02G	E138A	No mutation	No mutation	IR: Rilpivirine	Match	Mismatch		
4	17200 cp/mL	CRF16_A2D	T215A	No mutation	No mutation	IR: Zidovudine	Match	Mismatch		
Inde	ex HR (High Frequ	High Frequency Resistance), IR (Intermediate Frequency Resistance)								

Methods

A total of 10 HIV-1 positive serum samples (received at Mubarak Al Kabeer Hospital

Table 1. Comparison between NGS subtyping and drug resistance mutations vs. targeted and Sanger sequencing

The DeepCheck software analysis pipeline offered ease of use, scalability, data management, quality control, and limited infrastructure. The implementation of the Torrent Suite plugin for analysis and reporting simplifies and streamlines the difficult task of reviewing, interpreting, and reporting HIV-1 drug-resistance results. The plugin processes data automatically after the completion of a sequencing run and produces files that can be consumed by laboratory information systems (LIS) to minimize the amount of technical hands-on time and reduce errors, **Figure 1 (A-D)**.

Transcriptase mutations A DeepChek [®] - HIV Drug Resistance Determination												
.0.00%	5.00%	3.00%	Prevalence %	Q-Score	500							
1	1	1	98.69	30								
1	1	1	20.04	29								
<u></u>	-	1	99.17	29			HV Non-Nucl	enside Reve	rse Transcr	intase Inhihi	tors	
,			3.54	29		The receiverse transcriptase minibitors						
,			98.91	28								
,			96.56	27			Algorithm	20.00%	10.00%	5.00%	3.00%	
	1	1	99.04	29			rigontini	20.0070	2010070	0.0070	0.00 /	
	1	1	99.14	27			ANDO		D	B	D.	
	1	1	5.47	20		Doravirine	ANRS	ĸ	к	к	R	
	1	1	95.24	26		Dolaviille	HIV Db	1	1 1	1	l 1	
		1	3.12	28			111 20			-		
			96.84	27		E fau dana an	ANRS	R	R	R	R	
t			97.66	27		Efavirenz	HIV/Db	P	P	P	P	
-			88.76	28			HIV DO	IN IN	N N	IN IN	N N	
_			4.89	24			ANRS	S	S	S	S	
	1	1	47.79	22		Etravirine		0		6	0	
	1	1	6.05	19			HIV DO	5	5	5	5	
	1	1	29.75	24			ANRS	R	R	R	R	
	1	1	99.15	27		Nevirapine	71110				N.	
	-	1	96.38	27			HIV Db	R	R	R	R	
			10.84	30			ANDO					
	1		91.77	20		Rilpivirine	ANRS			I		
			94.73	27		i aprilito	HIV Db	l l l l		1		
	1	1	97.4	28								
	1	1	87.18	30			ANRS			HIVDb		
	1	1	35.51	30						Constantible (C)		
_	1	1	99.4	28		S	Suscentibl	0		Susceptible (S)		
_	1	1	84.75	27			Potential low-level resistance (PLLR)					
_			96.02	26						low lovel resistance (
\vdash			87.85	30		I Possible resistance Low-level resistance (LLR) Intermediate resistant (IR)						
-		*	40.97	29								

for HIV-1 genotyping) along with HIV-1 positive external control were evaluated for the standardization of the HIV-1 WGS. All samples were extracted using MagNa Pure (Roche). HIV-1 RNA was amplified using the DeepChek® Assays Whole Genome HIV-1 (ABL Diagnostics) and was sequenced using the NGS Ion Torrent S5 (ThermoFisher). Sequences were compared to those obtained by targeted NGS and Sanger Sequencing. DeepChek® HIV-1 Whole Genome software (ABL) was used for the interpretation of genotyping and drug-resistance analysis. Following the manufacturer's instructions, five different primer sets were used to amplify the following targets (GAG, Pol, Env, two regions corresponding for accessory proteins (vif, vpr, vpu) and (Nef). The summarized workflow is shown in **Figure 1**.

Accuracy, sensitivity, and reproducibility in calling consensus sequences and

Figure 1. A shows the mutation location, B shows the drug-resistance frequency, C shows the results interpretations, D shows the HIV subtyping

Conclusions

HIV Rev

1. This study is the first evaluation of the DeepChek® Whole Genome HIV-1 Assay (ABL) in Kuwait at Mubarak Al Kabeer Hospital, MOH, using the Ion Torrent S5 Sequencing Platform combined with an DeepCheck analysis software.

2. The WG NGS assay has several advantages over Sanger sequencing. Adjacent nucleotide variants within a codon that can confound Sanger sequencing can be resolved using WG NGS, eliminating ambiguous amino acid calls that can affect drug-resistance interpretation. Low frequency variants that play an important role in providing optimum treatment outcomes can be established using WGS.

detecting majority drug-resistance mutations were all monitored by sequencing

each sample twice in two different experimental settings (targeted NGS sequencing)

and WGS settings.

Acknowledgments: Ministry of Health for providing the up-to-date NGS platform for diagnostic laboratories purposes. Virology Unit at FOM, Microbiology Department for their continuous support. MKH Virology Laboratory Staff.

1. Low-Frequency HIV-1 Drug Resistance Mutations and Risk of NNRTI-Based Antiretroviral Treatment Failure. Z Li et.al. JAMA, April 6, 2011-Vol 305, No. 13.

2. Comparison of algorithms that interpret genotypic HIV-1 drug resistance to determine the prevalence of transmitted drug resistance. L Liu et al. AIDS. 2008 April 23; 22(7): 835–839.

3. Genotypic susceptibility scores and HIV type 1 RNA responses in treatment-experienced subjects with HIV type 1 infection. JA Anderson et al. AIDS Res Hum Retroviruses. 2008 May;24(5):685-94.